Protective effects of Dunaliella salina – a carotenoids-rich alga – against ultraviolet B-induced corneal oxidative damage in mice

نویسندگان

  • Chia-Fang Tsai
  • Fung-Jou Lu
  • Yu-Wen Hsu
چکیده

PURPOSE Ultraviolet B (UVB) radiation from sunlight is known to be a risk factor for human corneal damage. The purpose of this study was to investigate the protective effects of Dunaliella salina (D. salina) on UVB radiation-induced corneal oxidative damage in male imprinting control region (ICR) mice. METHODS Corneal oxidative damage was induced by exposure to UVB radiation at 560 μW/cm(2). Animals were orally administered (gavage) D. salina at doses of 0, 123, and 615 mg/kg bodyweight/day for eight days. Corneal surface damages were graded according to smoothness and the extent of lissamine green staining. Corneal glutathione (GSH) and malondialdehyde (MDA) levels, as well as the activities of superoxide dismutase (SOD), catalase, glutathione peroxidase (GSH-Px), and glutathione reductase (GSH-Rd) in cornea were measured to monitor corneal injury. RESULTS UVB irradiation caused significant damage to the corneas, including apparent corneal ulcer and severe epithelial exfoliation, leading to decrease in the activities of SOD, catalase, GSH-Px, GSH-Rd, and GSH content in cornea, whereas there was increased corneal MDA content as compared with the control group. Treatment with D. salina could significantly (p<0.05) ameliorate corneal damage and increase the activities of SOD, catalase, GSH-Px, GSH-Rd, and GSH content, and decrease the MDA content in corneas when compared with the UVB-treated group. CONCLUSIONS The studies demonstrate that D. salina exhibits potent protective effects on UVB radiation-induced corneal oxidative damage in mice, likely due to both the increase of antioxidant enzyme activity and the inhibition of lipid peroxidation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Epigallocatechin gallate eye drops protect against ultraviolet B–induced corneal oxidative damage in mice

PURPOSE Ultraviolet B (UVB) radiation from sunlight is a known risk factor for human corneal injury. The aim of the present study was to investigate the protective effects of green tea polyphenol epigallocatechin gallate (EGCG) on UVB radiation-induced corneal oxidative damage in male imprinting control region (ICR) mice. METHODS Corneal oxidative damage was induced by exposure to UVB radiati...

متن کامل

Production of Antioxidant by the Green Alga Dunaliella salina

The variation of the lipophilic (carotenoids and α-tocopherol) and hydrophilic (glutathione and ascorbic acid) antioxidant contents, and the activities of antioxidant enzyme such superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD), as well as cellular malonaldehyde and stable radicals of D. salina in response to ultraviolet B (UV-B radiation 290-320 nm) and secondary carotenoid indu...

متن کامل

Hepatoprotective and Antioxidant Activity of Dunaliella salina in Paracetamol-induced Acute Toxicity in Rats

Paracetamol has a reasonable safety profile when taken in therapeutic doses. However, it could induce hepatotoxicity and even more severe fatal acute hepatic damage when taken in an overdose. The green alga, Dunaliella salina was investigated for hepatoprotective and antioxidant activity against paracetamol-induced liver damage in rats. Male albino Wistar rats overdosed with paracetamol showed ...

متن کامل

Inhibition of Ultraviolet B-Induced Expression of the Proinflammatory Cytokines TNF-α and VEGF in the Cornea by Fucoxanthin Treatment in a Rat Model.

Ultraviolet B (UVB) irradiation is the most common cause of radiation damage to the eyeball and is a risk factor for human corneal damage. We determined the protective effect of fucoxanthin, which is a carotenoid found in common edible seaweed, on ocular tissues against oxidative UVB-induced corneal injury. The experimental rats were intravenously injected with fucoxanthin at doses of 0.5, 5 mg...

متن کامل

Light intensity effects on some molecular and biochemical characteristics of Dunaliella salina. Leila Zarandi-Miandoab1,3, Mohammad-Amin Hejazi2*, Mohammad-Bager Bagherieh-Najjar1, Nader Chaparzadeh3

To gain a better understanding of molecular and biochemical events involved in light intensity adaptations of Dunaliella salina, we studied the expression of phytoen synthase (psy) gene; pigments, carbohydrates, proteins and lipids accumulation under two light intensities. The cells were pre-cultured under 50 µmol photon m-2s-1 light intensity and then transferred to two different light intensi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2012